

Poul Petersen CIO, BigML, Inc

BigML, Inc

1

What is Clustering?

- An unsupervised learning technique
 - No labels necessary
 - Useful for finding similar instances
 - Smart sampling/labelling
- Finds "self-similar" groups of instances
 - Customer: groups with similar behavior
 - Medical: patients with similar diagnostic measurements
- Defines each group by a "centroid"
 - Geometric center of the group
 - Represents the "average" member
 - Number of centroids (k) can be specified or determined

Cluster Centroids

	U	
-		

date	customer	account	auth	class	zip	amount
Mon	Bob	3421	pin	clothes	46140	135
Tue	Bob	3421	sign	food	46140	401
Tue	Alice	2456	pin	food	12222	234
Wed	Sally	6788	pin	gas	26339	94
Wed	Bob	3421	pin	tech	21350	2459
Wed	Bob	3421	pin	gas	46140	83
Thr	Sally	6788	sign	food	26339	51

Cluster Centroids

date	customer	account	auth	class	zip	amount		
Mon	Bob	3421	pin	clothes	46140	135	◀┐	
Tue	Bob	3421	sign	food	46140	401		
Tue	Alice	2456	pin	food	12222	234	simila	r
Wed	Sally	6788	pin	gas	26339	94		
Wed	Bob	3421	pin	tech	21350	2459		
Wed	Bob	3421	pin	gas	46140	83	←	
Thr	Sally	6788	sign	food	26339	51		

Same:

auth = pin amount ~ \$100

Different:

date: Mon != Wed customer: Sally != Bob account: 6788 != 3421 class: clothes != gas zip: 26339 != 46140

Centroid:

date = Wed (2 out of 3) customer = Bob account = 3421auth = pin class = gas zip = 46140amount = \$104

Use Cases

- Customer segmentation
 - Which customers are similar?
 - How many natural groups are there?

Customer Segmentation

- Dataset of mobile game users.
- Data for each user consists of usage statistics and a LTV based on ingame purchases
- Assumption: Usage correlates to LTV

GOAL: Cluster the users by usage statistics. Identify clusters with a higher percentage of high LTV users. Since they have similar usage patterns, the remaining users in these clusters may be good candidates for up-sell.

Use Cases

- Customer segmentation
 - Which customers are similar?
 - How many natural groups are there?
- Item discovery
 - What other items are similar to this one?

Item Discovery

- Dataset of 86 whiskies
- Each whiskey scored on a scale from 0 to 4 for each of 12 possible flavor characteristics.

GOAL: Cluster the whiskies by flavor profile to discover whiskies that have similar taste.

Use Cases

- Customer segmentation
 - Which customers are similar?
 - How many natural groups are there?
- Item discovery
 - What other items are similar to this one?
- Similarity
 - What other instances share a specific property?

Similarity

- Dataset of Lending Club Loans
- Mark any loan that is currently or has even been late as "trouble"

GOAL: Cluster the loans by application profile to rank loan quality by percentage of trouble loans in population

Use Cases

- Customer segmentation
 - Which customers are similar?
 - How many natural groups are there?
- Item discovery
 - What other items are similar to this one?
- Similarity
 - What other instances share a specific property?
- Recommender (almost)
 - If you like this item, what other items might you like?
- Active learning
 - Labelling unlabelled data efficiently

Active Learning

- Dataset of diagnostic measurements of 768 patients.
- Want to test each patient for diabetes and label the dataset to build a model but the test is expensive*.

GOAL:

Rather than sample randomly, use clustering to group

patients by similarity and then test a sample from each cluster to label the data.

Active Learning

*For a more realistic example of high cost, imagine a dataset with a billion transactions, each one needing to be labelled as fraud/not-fraud. Or a million images which need to be labeled as cat/not-cat.

Human Expert

Human Expert

- Jesa used prior knowledge to select possible features that separated the objects.
- "round", "skinny", "edges", "hard", etc
- Items were then clustered based on the chosen features
- Separation quality was then tested to ensure:
- met criteria of K=3
- groups were sufficiently "distant"
- no crossover

Human Expert

Create features that capture these object differences

- Length/Width
 - greater than 1 => "skinny"
 - equal to 1 => "round"
 - less than 1 => invert
- Number of Surfaces
 - distinct surfaces require "edges" which have corners
 - easier to count

Clustering Features

Object	Length / Width	Num Surfaces
penny	1	3
dime	1	3
knob	1	4
eraser	2.75	6
box	1	6
block	1.6	6
screw	8	3
battery	5	3
key	4.25	3
bead	1	2

Plot by Features

Plot by Features

K-Means Algorithm

K-Means Algorithm

Features Matter

Convergence

Starting Points

- Random points or instances in n-dimensional space
 - Might start "too close"
 - Risk of sub-optimal convergence

Sub-Optimal Converge

Starting Points

- Random points or instances in n-dimensional space
 - Might start "too close"
 - Risk of sub-optimal convergence
- Chose points "farthest" away from each other
 - but this is sensitive to outliers
- k++
 - the first point is chosen randomly from instances
 - each subsequent point is chosen from the remaining instances with a probability proportional to the squared distance from the point's closest existing cluster center

K++ Initial Centers

K++ Initial Centers

K++ Initial Centers

Scaling Matters

- What is the distance to a "missing value"?
- What is the distance between categorical values?
 - How far is "red" from "green"?
- What is the distance between text features?
- Does it have to be Euclidean distance?
- Unknown ideal number of clusters, "K"?

Distance to Missing?

- Nonsense! Try replacing missing values with:
 - Maximum
 - Mean
 - Median
 - Minimum
 - Zero
- Ignore instances with missing values

Distance to Categorical?

Then compute Euclidean distance between vectors

	toy color	favorite toy	animal
	red	ball	cat
	green	ball	cat
→ D = 1	d=1	d=0	d=0
	red	laser	cat
	red	squeaky	dog
\rightarrow D = $\sqrt{2}$	d=0	d=1	d=1

Note: the centroid is assigned the most common category of the member instances

Cluster Analysis

Text Vectors

- 1 if collinear, 0 if orthogonal
- only positive vectors: $0 \le CS \le 1$
- Cosine Distance = 1 Cosine Similarity
- CD(TF1, TF2) = 0.5

Cosine <u>Similarity</u>

Your Turn!

- Create a 1-click (g-means) cluster for Diabetes
- Be certain to use the **entire dataset** (not the 80/20)
 - How many groups does it find?
 - How many groups have diabetes=True?
- Create a 1-click (g-means) cluster for PDX Homes
 - How many groups does it find?
 - How many total houses are in the groups and does this match the dataset?
 - How could you increase the number of groups?

