Every Model is Wrong, but Some Are Useful

Poul Petersen CIO, BigML, Inc

BigML, Inc

1

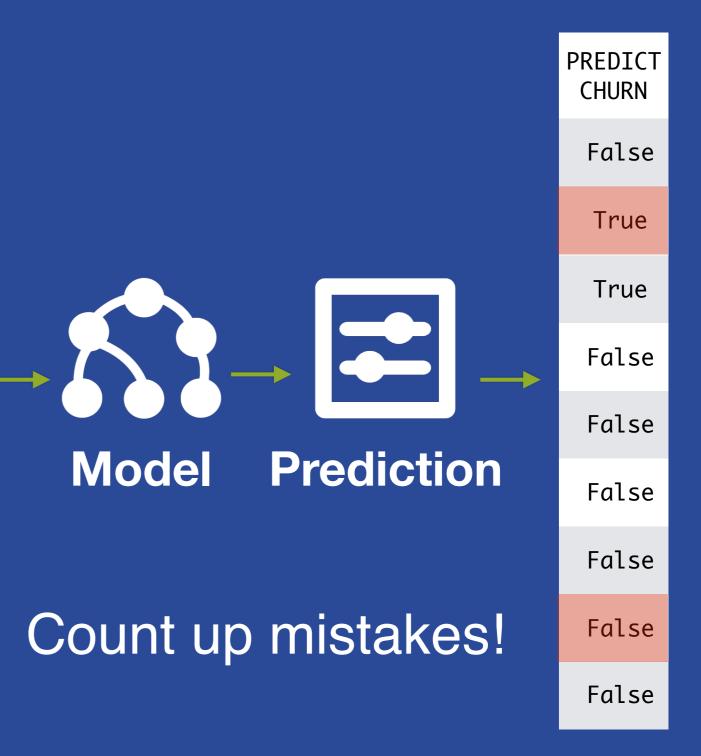
Why Evaluations

- FACT: No model is perfect they all make mistakes
 - Your data has mistakes
 - Models are "approximations"
- Today you will/have seen models that predict:
 - Churn:
 - Diabetes:
 - Home Prices:
- You have also seen several αιπεrent kinds of models
 - Decision Trees / Ensembles / Logistic Regression / Deepnets
 - Which one works the best for **your** data

Evaluations

Easy Right?

INTL MIN	INTL CALLS	INTL CHARGE	CUST SERV CALLS	CHURN
8.7	4	2.35	1	False
11.2	5	3.02	0	False
12.7	6	3.43	4	True
9.1	5	2.46	0	False
11.2	2	3.02	1	False
12.3	5	3.32	3	False
13.1	6	3.54	4	False
5.4	9	1.46	4	True
13.8	4	3.73	1	False

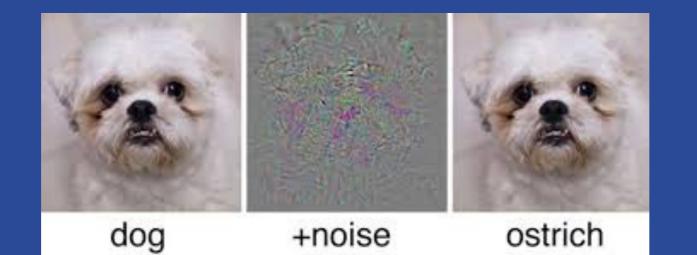


Evaluations Demo #1

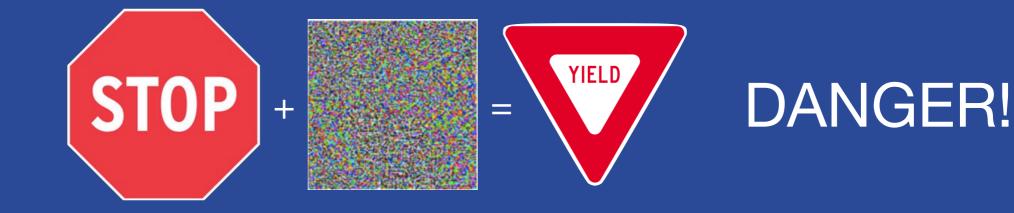
What Just Happened?

- We started with the churn **Datasource**
- Created a Dataset
- Built a Model to predict churn
- We used the Model to predict churn for each customer in the Dataset using a Batch Prediction
- Downloaded the Batch Prediction as a CSV and looked for errors. That is, when the Prediction did not match the known true value for churn
- The comparison was tedious!
 - Examining one line at a time
 - Hard to understand need some metrics!!!

BUT Mistakes can be Costly



FUN!



Insight: Labeling a Yield as a stop is not as bad as labelling a stop as a yield... We REALLY need better metrics!

- Imagine we have a model that can predict a person's dominant hand, that is for any individual it predicts left / right
- Define the **positive** class
 - This selection is arbitrary
 - It is the class you are interested in!
 - The **negative** class is the "other" class (or others)
- For this example, we choose : left

Evaluation Metrics

- We choose the positive class: left
- True Positive (TP)
 - We predicted left and the correct answer was left
- True Negative (TN)
 - We predicted **right** and the correct answer was **right**
- False Positive (FP)
 - Predicted left but the correct answer was right
- False Negative (FN)
 - Predict right but the correct answer was left

Evaluation Metrics

ml

Remember...

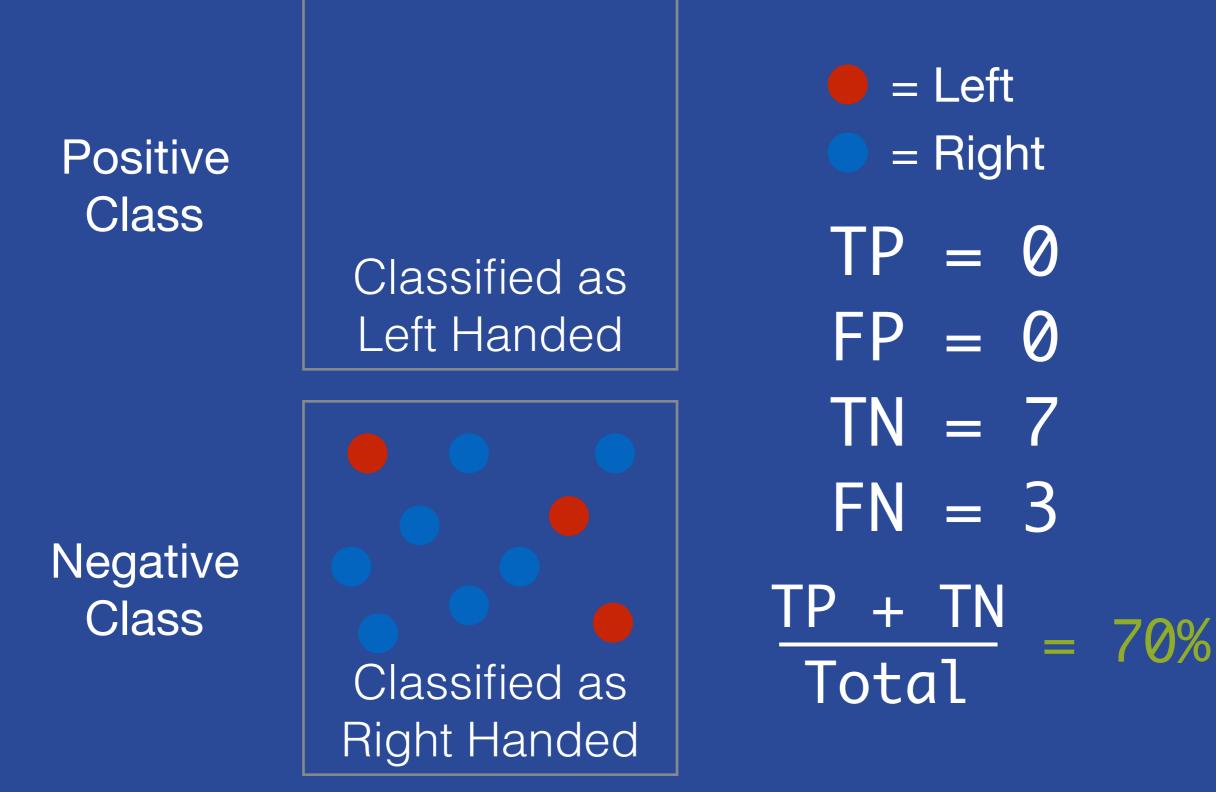
True Positive: Correctly predicted the *positive* class True Negative: Correctly predicted the *negative* class False Positive: Incorrectly predicted the *positive* class False Negative: Incorrectly predicted the *negative* class

Accuracy

TP + TN Total

- "Percentage correct" like an exam
- If Accuracy = 1 then no mistakes
- If Accuracy = 0 then all mistakes
- Intuitive but not always useful
- Watch out for unbalanced classes!
 - Ex: 90% of people are right-handed and 10% are left
 - A silly model which *always* predicts right handed is
 90% accurate

Accuracy

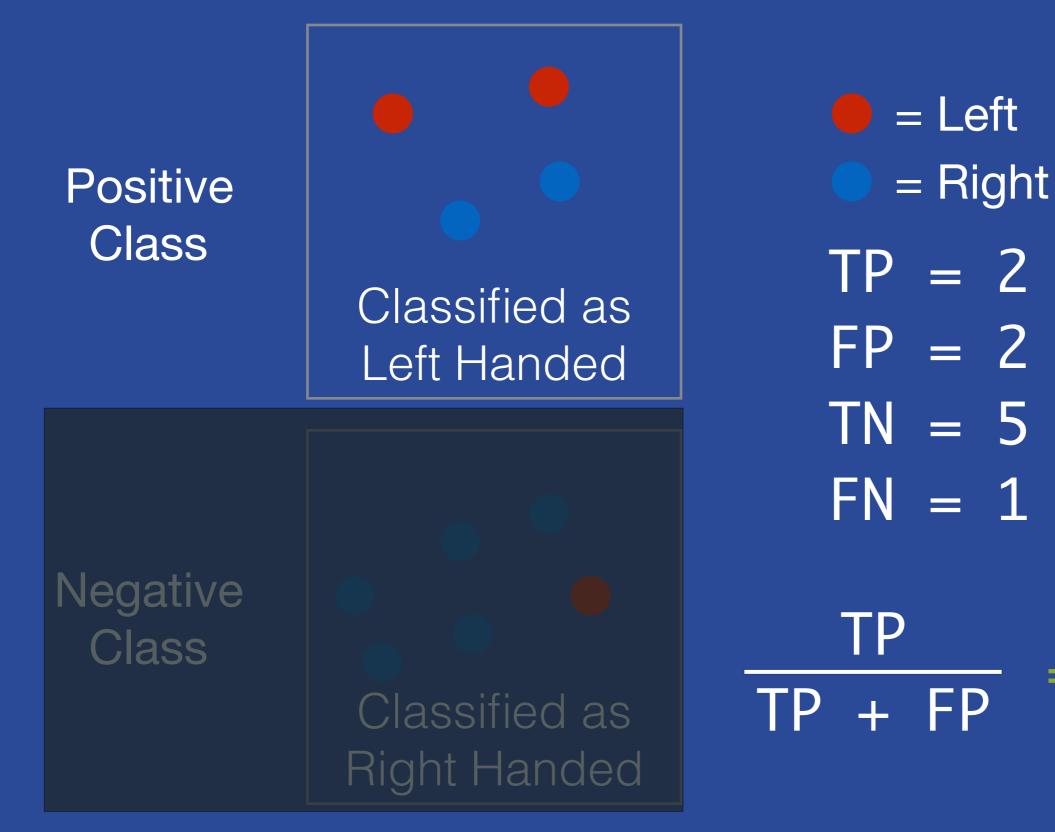


Precision

TP TP + FP

- "accuracy" or "purity" of <u>positive</u> class
- How well you did separating the positive class from the negative class
- If Precision = 1 then no FP.
 - You may have missed some left handers, but of the ones you identified, <u>all</u> are left handed. No mistakes.
- If **Precision** = **0** then no **TP**
 - None of the left handers you identified are actually left handed. All mistakes.

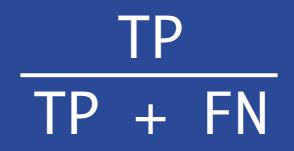
Precision



BigML, Inc

Evaluations

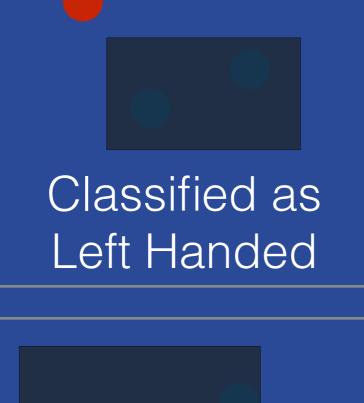
= 50%



- percentage of positive class correctly identified
- A measure of how well you identified all of the positive class examples
- If Recall = 1 then no $FN \rightarrow AII$ left handers identified
 - There may be FP, so precision could be <1
- If Recall = \emptyset then no TP \rightarrow No left handers identified

Recall

Positive Class



Negative Class

Classified as Right Handed

Left = Right TP = 2FP = 2TN = 5FN = 1TP 66% = TP + FN

2 * Recall * Precision Recall + Precision

- harmonic mean of **Recall & Precision**
- If f-measure = 1 then Recall == Precision == 1
- If **Precision** OR **Recall** is small then the **f-measure** is small

Phi Coefficient

<u>TP*TN - FP*FN</u> SQRT[(TP+FP)(TP+FN)(TN+FP)(TN+FN)]

- Returns a value between -1 and 1
- If -1 then predictions are opposite reality
- = **0** no correlation between predictions and reality
- =1 then predictions are always correct

Evaluations Demo #2

What Just Happened?

ml

- Starting with the Diabetes **Source**, we created a **Dataset** and then a **Model**.
- Using both the Model and the original Dataset, we created an Evaluation.
- We reviewed the metrics provided by the Evaluation:
 - Confusion Matrix
 - Accuracy, Precision, Recall, f-measure and phi
- This Model seemed to perform really, really well...

Question: Can we trust this model?

Evaluation Danger!

• Never evaluate with the training data!

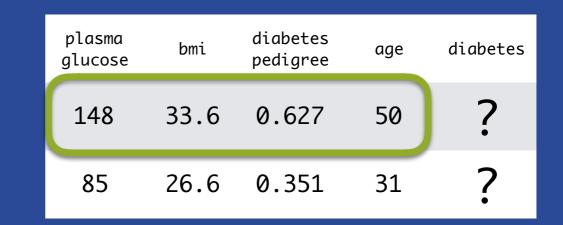
- Many models are able to "memorize" the training data
- This will result in overly optimistic evaluations!

"Memorizing" Training Data

Training

plasma glucose	bmi	diabetes pedigree	age	diabetes
148	33.6	0.627	50	TRUE
85	26.6	0.351	31	FALSE
183	23.3	0.672	32	TRUE
89	28.1	0.167	21	FALSE
137	43.1	2.288	33	TRUE
116	25.6	0.201	30	FALSE
78	31	0.248	26	TRUE
115	35.3	0.134	29	FALSE
197	30.5	0.158	53	TRUE

Evaluating



- Exactly the same values!
- Who needs a model?
- What we want to know is how the model performs with values never seen at training:

124 22 0.107 46

?

Evaluation Danger!

• Never evaluate with the training data!

- Many models are able to "memorize" the training data
- This will result in overly optimistic evaluations!
- If you only have one Dataset, use a train/test split

Train / Test Split

Train

plasma glucose	bmi	diabetes pedigree	age	diabetes
148	33.6	0.627	50	TRUE
85	26.6	0.351	31	FALSE
183	23.3	0.672	32	TRUE
89	28.1	0.167	21	FALSE
137	43.1	2.288	33	TRUE
116	25.6	0.201	30	FALSE
78	31	0.248	26	TRUE
115	35.3	0.134	29	FALSE
197	30.5	0.158	53	TRUE

- These instances were never seen at training time.
- Better evaluation of how the model will perform with "new" data

Evaluation Danger!

• Never evaluate with the training data!

- Many models are able to "memorize" the training data
- This will result in overly optimistic evaluations!
- If you only have one Dataset, use a train/test split
- Even a train/test split may not be enough!
 - Might get a "lucky" split
 - Solution is to repeat several times (formally to cross validate)

Evaluation Demo #3

- Start with the Diabetes source and create a dataset
- Split it 80/20 with the seed bigm
- Build a 1-click model on the 80%
- Evaluate with the 20%
 - What is the phi score?
 - **Bonus**: which class has the best recall?

Evaluation

• Never evaluate with the training data!

- Many models are able to "memorize" the training data
- This will result in overly optimistic evaluations!
- If you only have one **Dataset**, use a train/test split
- Even a train/test split may not be enough!
 - Might get a "lucky" split
 - Solution is to repeat several times (formally to cross validate)
- Don't forget that accuracy can be mis-leading!
 - Mostly useless with unbalanced classes (left/right?)
 - Use weighting, operating points, other tricks...

Weighting

Instance	Rate	Payment	Outcome	Predict	Confidence
1	23%	134	Paid	Paid	20%
2	23%	134	Paid	Paid	25%
3	23%	134	Paid	Paid	30%
1000	23%	134	Paid	Paid	99.5%
1001	23%	134	Default	Paid	99.4%

Problem: <u>Default</u> is "more important", but occurs less often than <u>Paid</u> Solution: <u>Weights</u> tell the model to treat instances of a specific class (in this case Default) with more importance

Evaluations

Operating Points

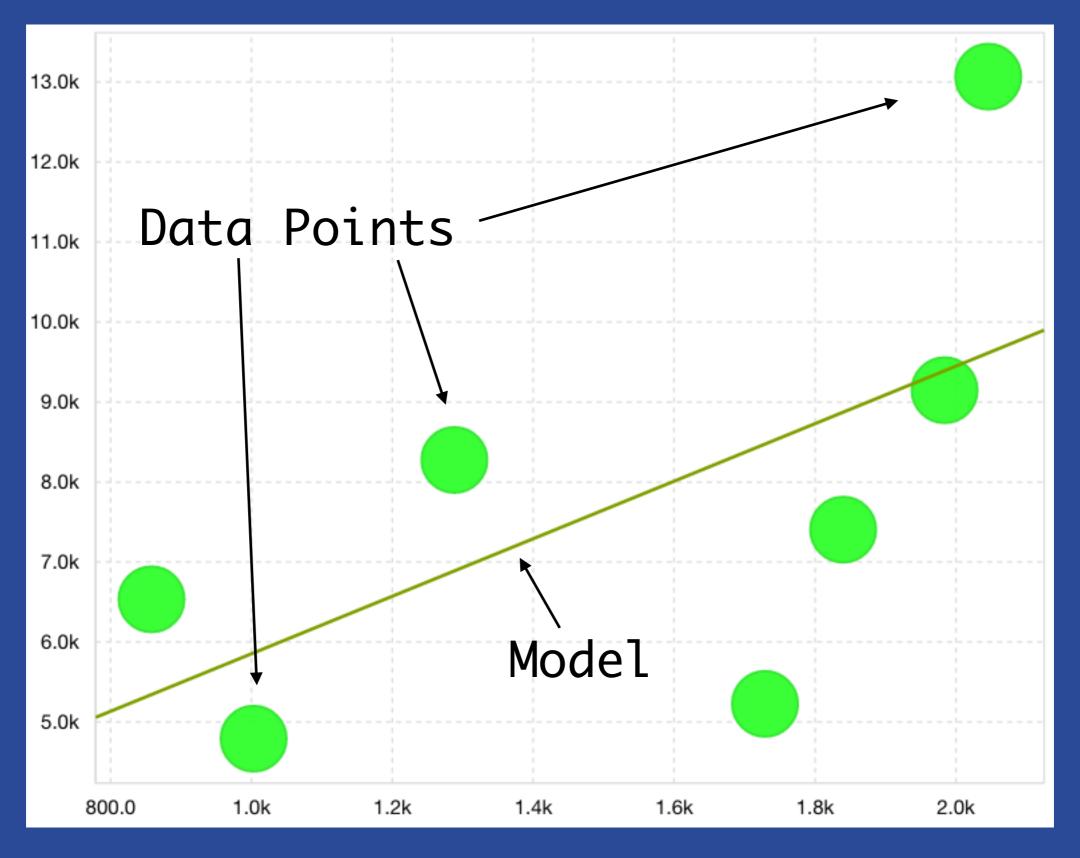
- The default probability threshold is 50%
- Changing the threshold can change the outcome for a specific class

Rate	Payment	 Actual Outcome	Probability PAID	Threshold @ 50%	Threshold @ 60%	Threshold @ 90%
8.4%	\$456	 PAID	95%	PAID	PAID	PAID
9.6%	\$134	 PAID	87%	PAID	PAID	DEFAULT
18%	\$937	 DEFAULT	36%	DEFAULT	DEFAULT	DEFAULT
21%	\$35	 PAID	88%	PAID	PAID	DEFAULT
17.5%	\$1,044	 DEFAULT	55%	PAID	DEFAULT	DEFAULT

Evaluations Demo #4

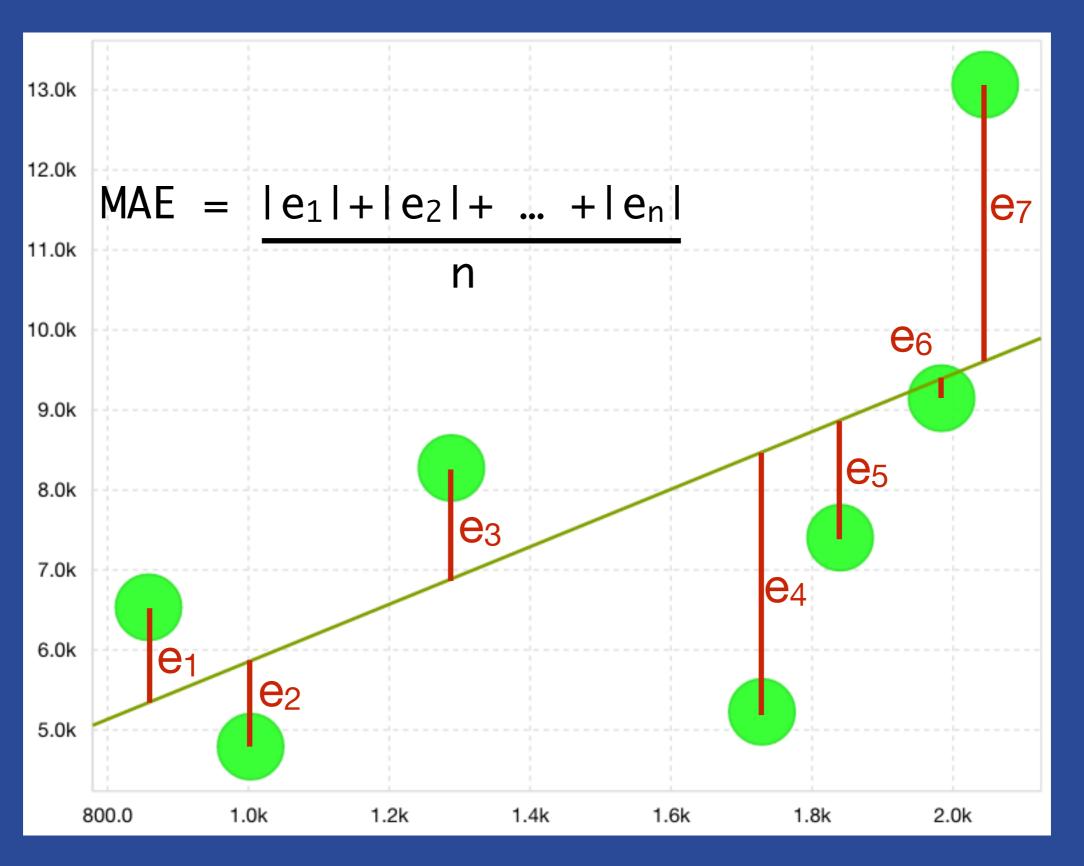
- Use the same 80/20 split of Diabetes from before
- Build a model with balance objective: true
- Evaluate the model
- How does it compare to the previous model?
- Which class, if any, is performing differently? Why?
- Can you detect more diabetes by changing the operating point? If so, at what cost?

Regression - Fitting a Line



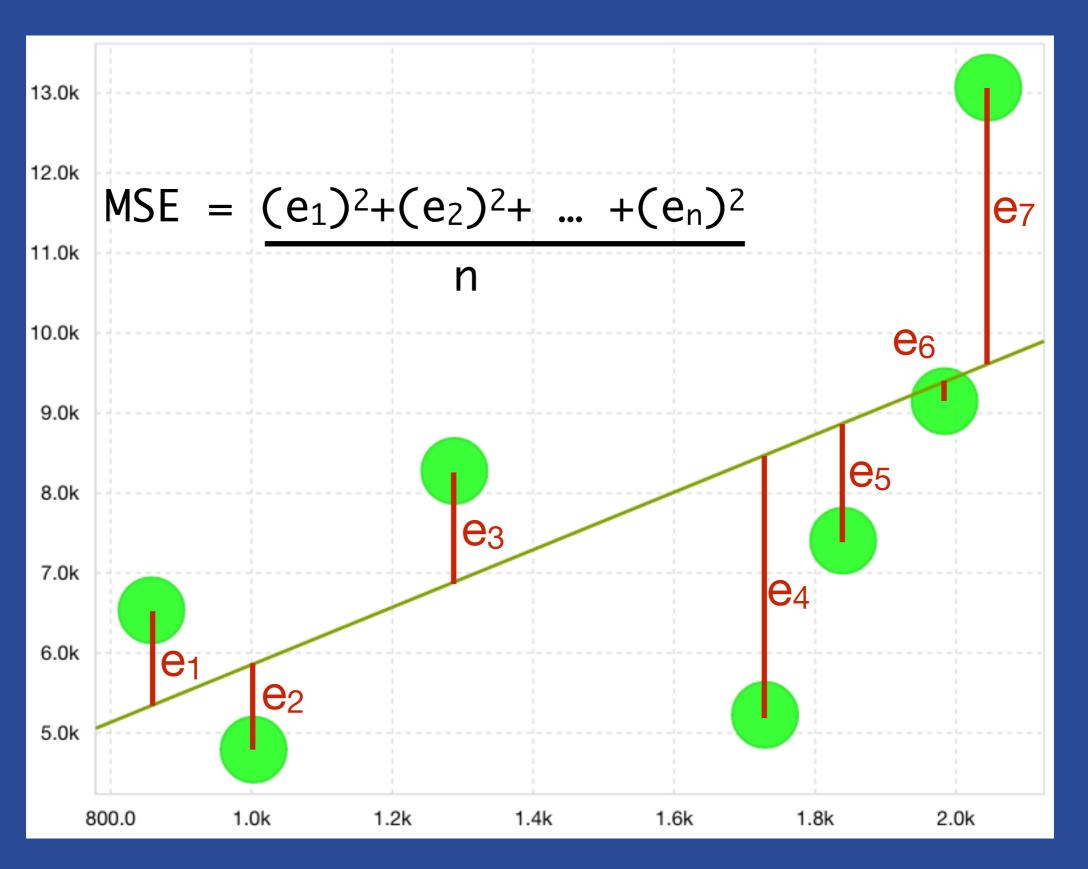
Evaluations

Mean Absolute Error



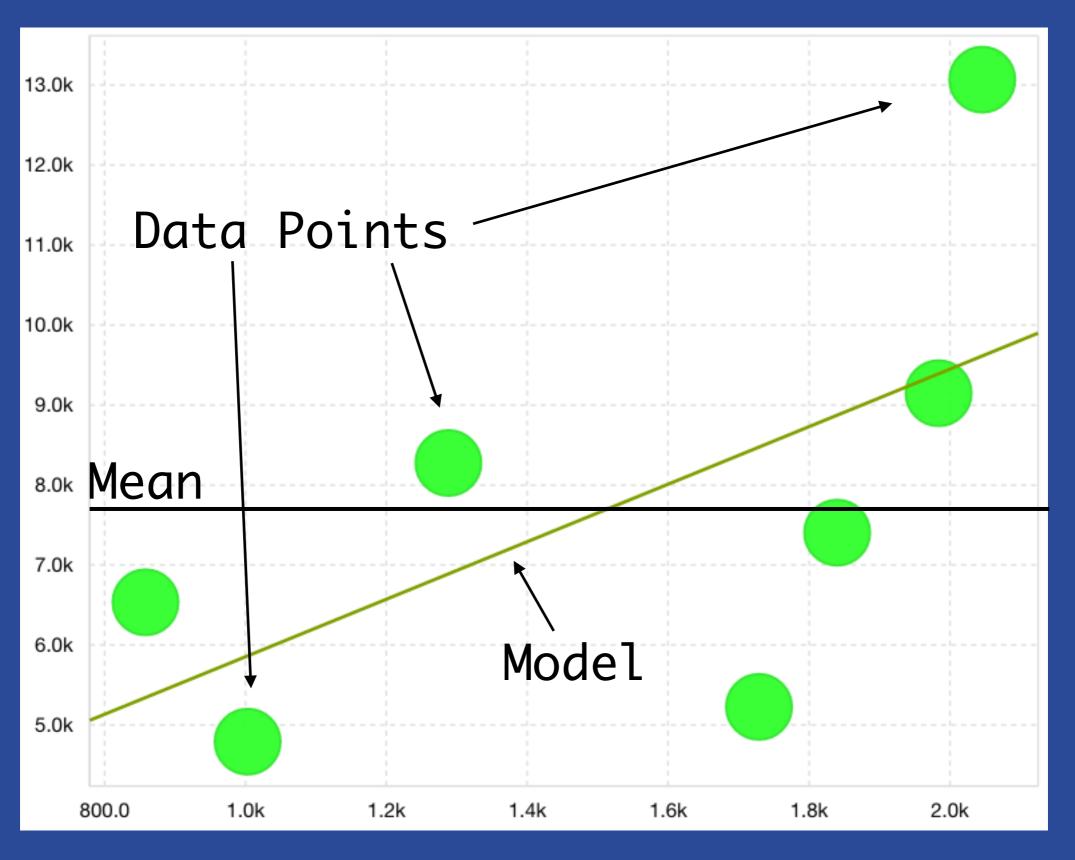
Evaluations

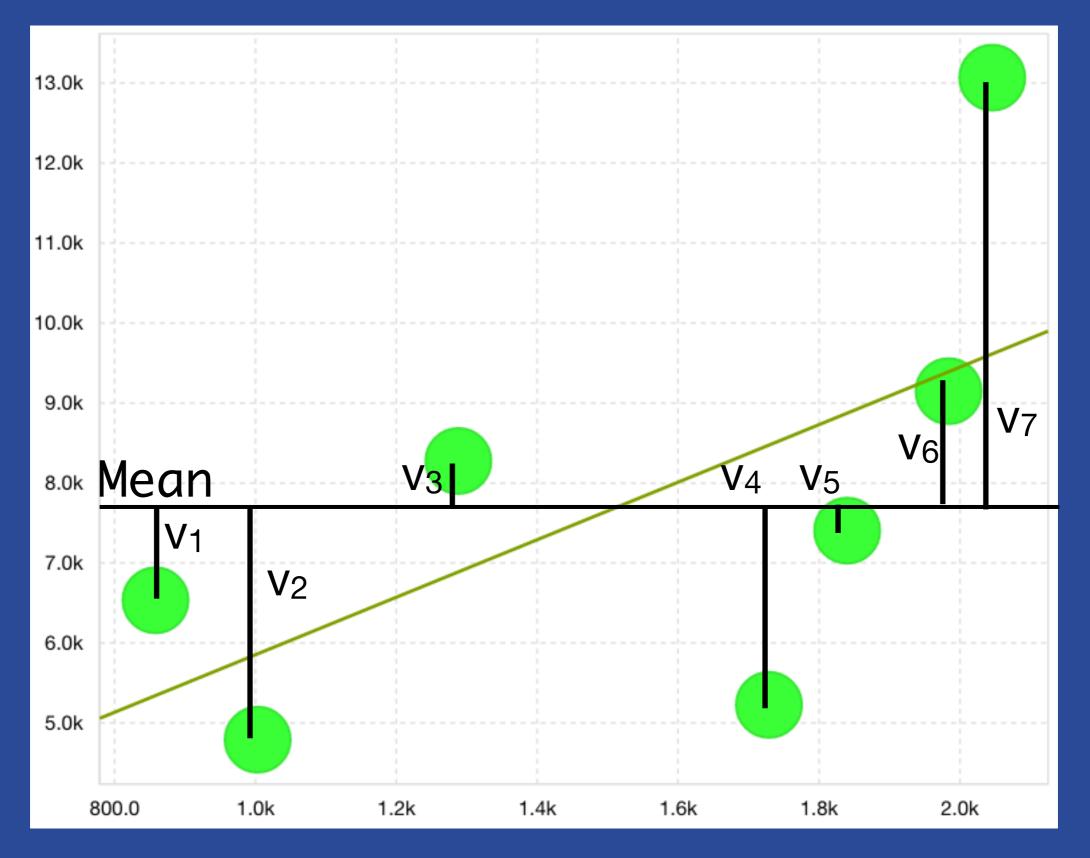
Mean Squared Error

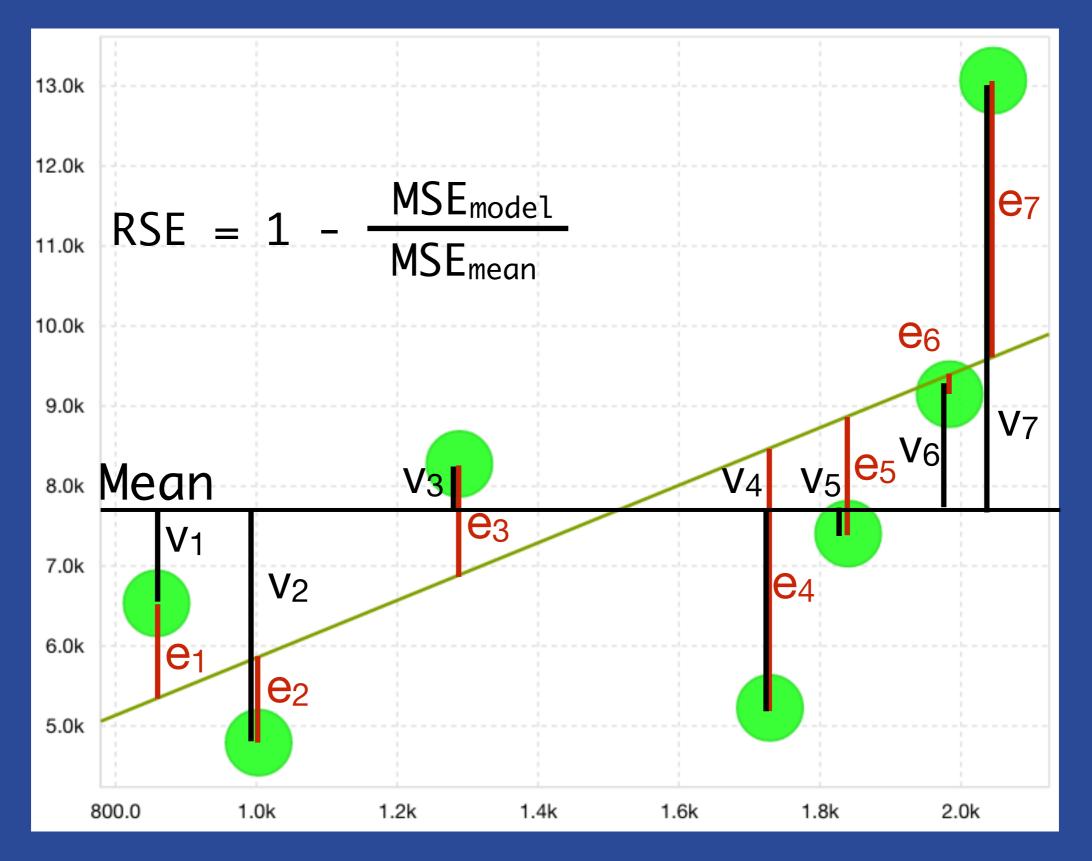


Evaluations

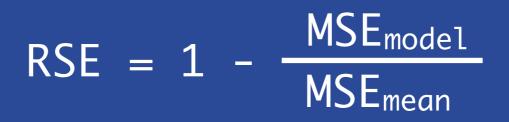
- For both MAE & MSE: Smaller is better, but values are unbounded
- MSE is always larger than or equal to MAE







Evaluations



- RSE: measure of how much better the model is than always predicting the mean
- < Ø model is worse then mean
 - MSEmodel > MSEmean
- = 0 model is no better than the mean
 - MSE_{model} = MSE_{mean}
- \rightarrow 1 model fits the data "perfectly"
 - MSE_{model} = 0 (or MSE_{mean} >> MSE_{model})

Evaluations Demo #5

Multi-Class Evaluations

- All the evaluation metrics are built from TP/FP/TN/FN which requires that the class only have two states:
 - True/False
 - Left/Right
 - On/Off
- What happens with multiple classes?
 - Yes/No/Maybe
 - OK/Suspicious/Fraud
 - Brown/Orange/White/Yellow
- Basically, one-versus-all:
 - The positive class is still the one you are interested in
 - The negative class is "everything else"

Evaluation Demo #6

