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Model Choices
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Decreasing Interpretability / Better Representation / Longer Training
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Mid Stage

Proven Application

Late Stage

Critical Performance

DeepnetsSingle Tree Model

Logistic Regression Boosted Trees

Random

Decision Forest

Decision Forest
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BigML Deepnets
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• The success of a Deepnet is dependent on getting the right 
network structure for the dataset 

• But, there are too many parameters: 

• Nodes, layers, activation function, learning rate, etc… 

• And setting them takes significant expert knowledge 

• Solution:  

• Metalearning (a good initial guess) 

• Network search (try a bunch)

Remember this?
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OptiML
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• Each resource has several parameters that impact quality 
• Number of trees, missing splits, nodes, weight 

• Rather than trial and error, we can use ML to find ideal 
parameters 

• Why not make the model type, Decision Tree, Boosted Tree, 
etc, a parameter as well? 

• Similar to Deepnet network search, but finds the optimum 
machine learning algorithm and parameters for your data 
automatically

Key Insight: We can solve any parameter selection 
problem in a similar way.
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OptiML Demo
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Fusions Inside
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• Fuse any set of models into a new “fusion”

• Must have the same objective type


• Inputs and feature space can differ


• Weights can be added 

• Give more importance to individual models


• Fusions can be fused as well

• Especially useful for fusing OptiML models

Key Insight: ML algorithms each have unique  
strengths and weaknesses
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Performance thru Diversity
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Dataset

Optimized 

Deepnet

Optimized 

Ensemble

Optimized 

Logistic Regression

Better?
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Fusion Demo #1
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Fusions: Under the Hood
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P(TRUE) = [56+(100-67)+2*78] / 4

Model Prediction Probability Weight

Ensemble TRUE %56 1 Fus ion

Deepnet FALSE %67 1 TRUE %61

Model TRUE %78 2

Classification

Model Prediction Error Weight

Ensemble 156.78 12.56 1 Fus ion

Deepnet 139.55 9.88 1 160.13 17.49

Model 172.10 23.76 2

Regression



BigML, Inc OptiML and Fusions

Fusions: Like any BigML Model

10

• Fully accessible thru API and WhizzML

• Bindings have support for local predictions
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Decision Boundary Smoothness
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Single Tree: 
• Outcome changes abruptly near decision 

boundary

• And not at all parallel to the boundary

• This can be “surprising”

Single Tree + Deepnet: 
• Keep the interpretability of the tree

• But with a more nuanced decision boundary
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Feature Stability
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Feature Importance: Different subsets of features may have similar modeling 
performance 

Fusing models gives better resilience against missing values as well as  
ensuring that all relevant features are utilized.
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Weighting over Time
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1 Day

Data significance over time: 
• Some data may change significance in different times

• Short-term user behavior versus long-term

• Weights can set to account for significance of time

1 Week

1 Month

w=8

w=4

w=2
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Improved Class Separation
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Consider a 3-class objective 

• Really only care about “yes” versus “not yes”


• A single model may struggle to separate the two negative classes

Yes No Maybe

yes/no/maybe

yes/no

yes/maybe
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Feature Space Optimization
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Model Skills: Some ML algorithms “generally” do better 
on some feature types: 

• RDF for sparse text vectors

• LR/Deepnets for numeric features

• Trees for categorical features

Full

Numeric

Text
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Fusions Demo #2
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Your Turn!
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• Note: best to work in groups to limit computation time 
• Configure an OptiML of the Diabetes 80%  

• Limit number of model candidates to 10 
• Disable Deepnets from the search 
• Optimize for identifying diabetes 

• While the OptiML is running: 
• Build a Fusion from any set of Diabetes 80% models 
• Evaluate the fusion with the 20% 
• How does it compare to previous models? 

• Returning to the OptiML 
• Evaluate the top performing model with the 20% 
• How does it perform?




