Real-world Use Case
House Recommender

Poul Petersen
CIO, BigML
BigML for Alexa
Let’s build a recommender

Typical way to shop for a home...
Recommender Idea

Sample

All Homes For Sale

? Preference Data

? then use the Preference Model to filter all the homes on the market
Recommender Problem #1

What if there are really unusual homes in the data?

• A mansion with 20 bathrooms
• A home with no bedrooms
• A lot size that is smaller than the home?

We don’t want to show these as suggestions because they are unusual.... How do we detect anomalies?
Anomaly Detection

• We want to find and remove unusual houses.
• We create an **Anomaly** Detector and examine the top anomalies.
• We filter out any houses with a “high” anomaly score.
ML to fix missing data…

• Let’s use Machine Learning…

<table>
<thead>
<tr>
<th>SQFT</th>
<th>PRICE</th>
<th>BEDS</th>
<th>BATHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,125</td>
<td>$530,000</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2,100</td>
<td>$460,000</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1,200</td>
<td>$250,000</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>3,950</td>
<td>$610,000</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

What happened to being easy?
WhizzML Gallery
• We had a **Dataset** with missing values.

• We want to apply an algorithm to fix the missing values with Machine Learning.

• Rather than write the algorithm, we can find what we need in the **WhizzML** public gallery.

• Once we clone the **Script** we can use it again and again.

• We can write new ones too!
Recommender Problem #2

- How can we avoid showing essentially the same house over and over?

Sample

All Homes

Modern
Recommender Problem #2

• How can we avoid showing essentially the same house over and over?

• Great! What if we don’t know how to group them? Or how many groups?
Since we don’t know how many groups of homes there should be, we can use G-means Clustering to find the optimum number of groups of homes.

Our recommender will use these groups to create a better sampling for user preference.

We can try to understand the home Clusters using “model clusters” but the models will be difficult to interpret.
Understanding Clusters

<table>
<thead>
<tr>
<th>SQFT</th>
<th>PRICE</th>
<th>BEDS</th>
<th>BATHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,125</td>
<td>$530,000</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2,100</td>
<td>$460,000</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1,200</td>
<td>$250,000</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>3,950</td>
<td>$610,000</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

What if we could get rules like…

If SQFT \geqslant 3,125 THEN “Cluster 1”
Association Discovery

• We use a **Batch Centroid** to add the **Cluster** assignment of each home as a feature to the **Dataset**

• We use **Association Discovery** to find “interesting” relationships between the features including the **Cluster** assignment
There is much more interesting information than just the number of BEDS, BATHS, etc.

- Unfortunately, these "remarks" are not available in the Redfin download
- Adding them to our dataset requires crawling the website
- Like most ML projects, preparing the data is 80% of the difficulty (fortunately I already did it!)
Topic Models

- We have an extended home dataset with the syndicated remarks text field
- We can use **Topic Modeling** to create a deeper thematic understanding of the remarks
 - Perhaps homes that are "in-town" or "out-of-town"
- We can extend the **Dataset** with fields that represent for each home how related they are to each of these topics
- This will allow our **Clustering** to group homes by a deeper meaning than just **BEDS**, **BATHS**, etc
Recommender Idea

Modern

Small

Lots of Land

Preference Data

Preference Model
House Recommender