

Real World: Oscars

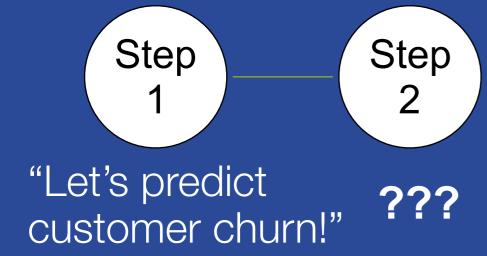
Predicting the Oscars

Poul Petersen

CIO, BigML

BigML, Inc

Where to Start?



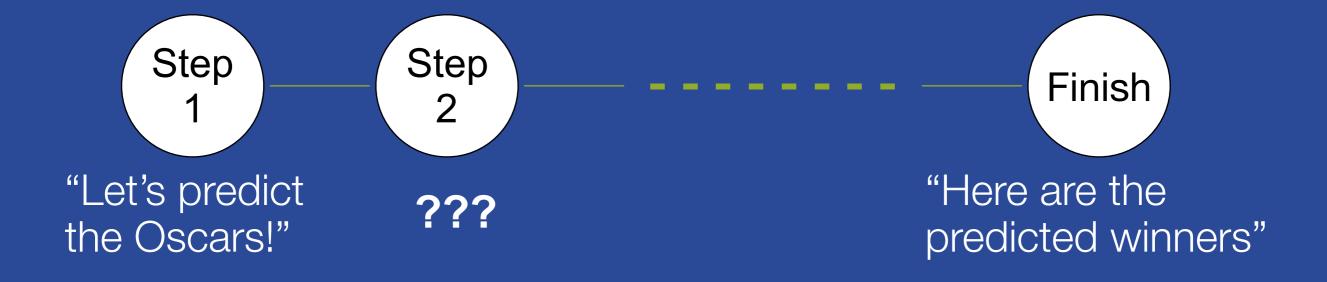
Finish

"Here are the customers we predict will leave our service"

Getting Started Guide

State the problem as an ML Task

- Remember: ML finds patterns in data enabling predictions about future events
- This means you need data
 - What data depends on what you want to predict
 - And the data you have or can collect
- Data needs to have patterns related to what you want to predict
 - Not magic: still can't predict random events, lotteries, etc
- Your problem statement needs to be specific
 - Not "Let's predict churn"
 - But "Let's predict churn by looking at the profile data of all previous customers of our service who have/have not churned"
 - This can be tricky...



BigML Scoresheet

2018

2019

- 6 out of 6 right!
- 8 out of 8 actually, but probability of the predictions was "too low"
 - Adapted Screenplay
 - Original Screenplay

- 4 our of 8 major awards correctly predicted
- Probabilities were lower this year
- This is still significantly better than guessing

Yay - Machine Learning!

There's no doubt that as I skim the #Oscars results, @bigmlcom and @pchh nailed the prediction game! The first with #MachineLearning and the latter with great assumption making about the voters

Contrapositive Time

Assertion:

We can predict the Oscars ⇒ we can predict lottery numbers

Contrapositive:

We can't predict lottery numbers ⇒ we can't predict the Oscars

Contradiction!

Can't Predict Lottery Numbers?

Nope Sorry! Two problems:

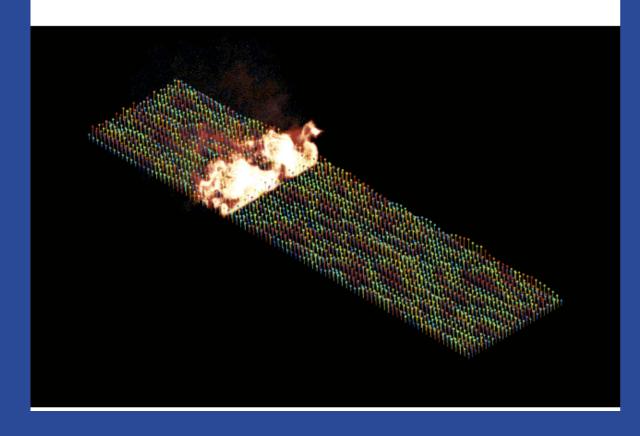
- The motion is chaotic (that is extremely non-linear)
- Even small changes in the initial conditions greatly change the outcome
- And you can't measure the initial conditions with infinite precision (thanks Heisenberg)

Question:

Why can we predict the Oscars?

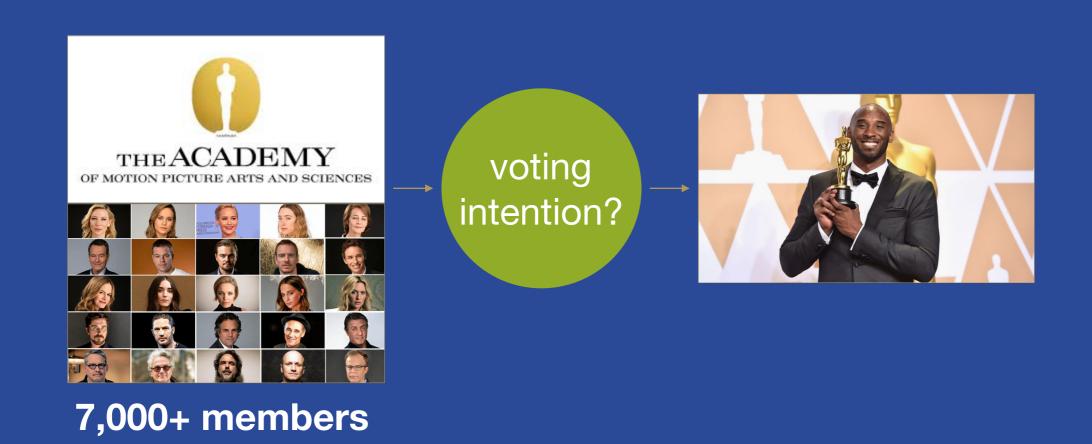
Machine Learning's 'Amazing' Ability to Predict Chaos

In new computer experiments, artificial-intelligence algorithms can tell the future of chaotic systems.



- ML to predict the propagation of a flame front
- This is also a chaotic system
- Succeeding in predicting out to 8 Lyapunov times
- Still a short amount of time
- A really short amount of time
- Lottery balls are allowed to "mix" for many, many Lyapunov times
- Does not contradict statement about predicting the lottery!

How an Oscar is Won



Question:

Don't we have the same problem as the lottery with predicting intention?

7,000 Chaotic Systems?

12

- Personal tastes
- Political considerations
- Values
- Cultural upbringing
- Critical education
- Pet peeves
- Corruption



Movie Watching Robots!

- Program robots to record audio and video
- Train them to react like a human to the movie
- Run a simulation and collect votes from the robots!

Please don't try to solve everything with AI/ML

Ranking ML Applications

availability / dec complexity) FEASIBILITY (inc data

POSTPONABLE

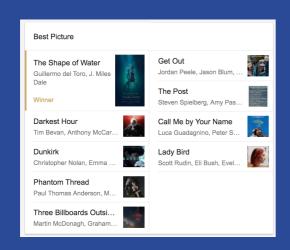
NO-BRAINERS START HERE

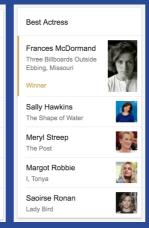
NO-GO

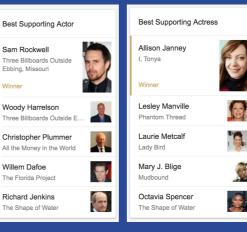
BRAINERS

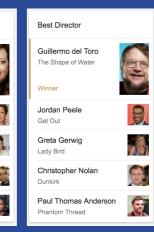
ROI (impact and cost)

What if we Just Guess?









1 of 9

1 of 5 1 of 5 1 of 5 1 of 5

28,125 COMBINATIONS **0.00003556** Probability

Consider Predicting Coin Tosses

After observing the first five flips as above, what is the probability that flip 6 is Heads? As stated, these events are independent, so the previous flips do not matter.

Consider Predicting Coin Tosses

What if this wasn't a fair coin?
Idea: movies are not "equally" likely to be Best Picture...

Let's Predict Best Picture

- These events are *not* independent
- Similar, but not identical, factors contribute to each win...
- We can expect a higher probability for Shape of Water to win

The Features

Data pulled from IMDB...

MOVIES

- year
- movie
- movie id
- certificate
- duration
- genre
- rate
- metascore
- synopsis
- votes
- gross
- release date
- user_reviews
- critic reviews
- popularity
- awards_wins
- awards nomination
- release_date.year
- release date.mont
- release_date.dayof-month
- release_date.dayof-week

AWARDS

- Oscar Best Picture nominated
- Oscar_Best_Director_nominated
- Oscar Best Actor nominated
- Oscar_Best_Actress_nominated
- Oscar_Best_Supporting_Actor_nominated
- Oscar_Best_Supporting_Actress_nominated
- Oscar_Best_AdaScreen_nominated
- Oscar_Best_OriScreen_nominated
- Oscar_nominated
- Oscar_nominated_categories
- Golden_Globes_won
- Golden_Globes_won_categories
- Golden Globes nominated
- Golden_Globes_nominated_categories
- BAFTA_won_categories
- BAFTA nominated
- BAFTA_nominated_categories Screen_Actors_Guild_won
- Screen_Actors_Guild_won_categories
- Screen Actors Guild nominated Screen Actors Guild nominated categories
- Critics_Choice_won
- Critics Choice won categories
- Critics_Choice_nominated
- Critics_Choice_nominated_categories
- Directors Guild won
- Directors_Guild_won_categories
- Directors_Guild_nominated
- Directors_Guild_nominated_categories
- Producers Guild won
- Producers Guild_won_categories
- Producers Guild nominated
- Producers Guild nominated categories
- Art_Directors_Guild_won
- Art_Directors_Guild_won_categories
- Art Directors Guild nominated
- Art_Directors_Guild_nominated_categories
- Writers_Guild_won
- Writers_Guild_won_categories
- Writers_Guild_nominated
- Writers_Guild_nominated_categories

- Costume Designers Guild won
- Costume_Designers_Guild_won_categories
- Costume Designers Guild nominated
- Costume_Designers_Guild_nominated_categories
- Online_Film_Television_Association_won
- Online_Film_Television_Association_won_categories
- Online_Film_Television_Association_nominated
- Online_Film_Television_Association_nominated_catego
- Online_Film_Critics_Society_won
- Online_Film_Critics_Society_won_categories
- Online_Film_Critics_Society_nominated
- Online Film Critics Society nominated categories
- People_Choice_won
- People_Choice_won_categories
- People_Choice_nominated
- People_Choice_nominated_categories
- London_Critics_Circle_Film_won
- London_Critics_Circle_Film_won_categories
- London Critics Circle Film nominated
- London_Critics_Circle_Film_nominated_categories
- American Cinema Editors won
- American_Cinema_Editors_won_categories
- American Cinema Editors nominated
- American_Cinema_Editors_nominated_categories
- Hollywood_Film_won
- Hollywood_Film_won_categories
- Hollywood_Film_nominated
- Hollywood_Film_nominated_categories
- Austin_Film_Critics_Association_won
- Austin_Film_Critics_Association_won_categories
- Austin_Film_Critics_Association_nominated
- Austin_Film_Critics_Association_nominated_categories
- Denver Film Critics Society won
- Denver_Film_Critics_Society_won_categories
- Denver_Film_Critics_Society_nominated
- Denver_Film_Critics_Society_nominated_categories
- Boston_Society_of_Film_Critics_won
- Boston_Society_of_Film_Critics_won_categories
- Boston_Society_of_Film_Critics_nominated Boston_Society_of_Film_Critics_nominated_categories
- New_York_Film_Critics_Circle_won

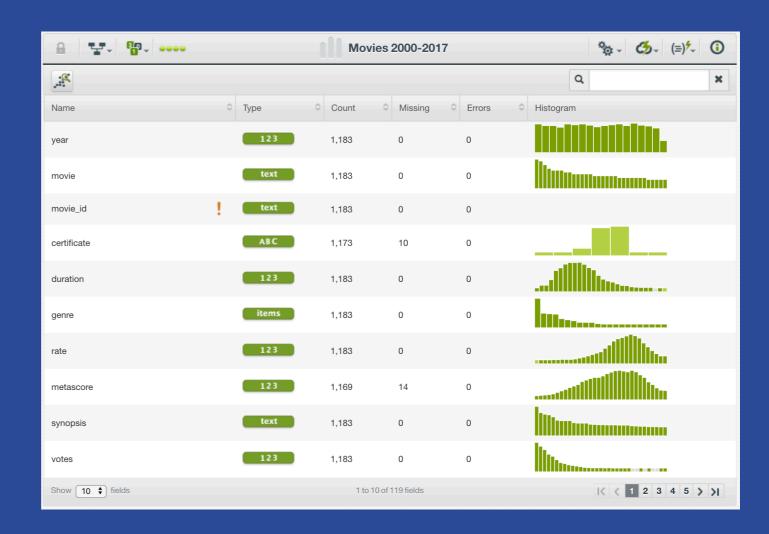
OBJECTIVE

- Oscar Best Picture wo
- Oscar_Best_Director_w
- Oscar Best Actor won
- Oscar Best Actress wo
- Oscar_Best_Supporting Actor won
- Oscar_Best_Supporting _Actress_won

Engineered Features:

Award items field **Nomination Counts Awards Counts**

Oscars Dataset



DATASET is publicly available:

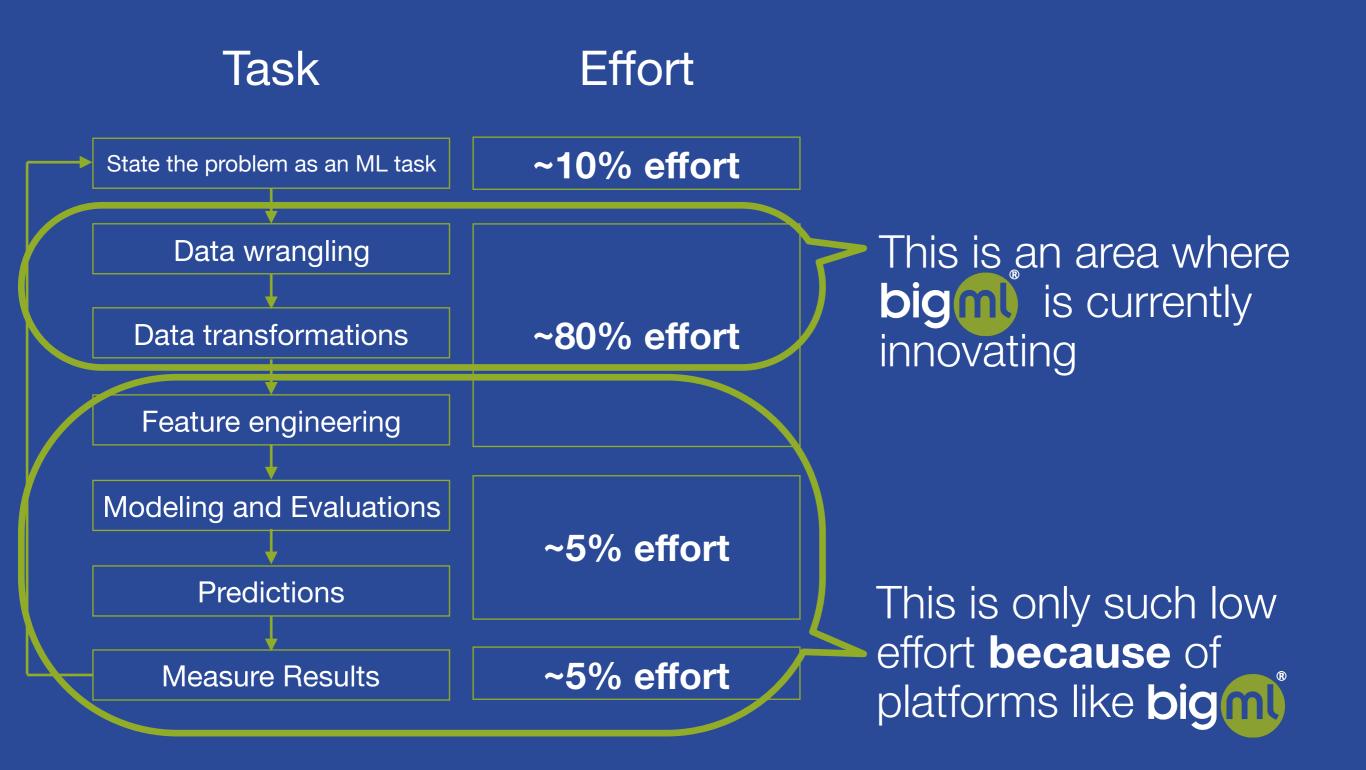
https://bigml.com/user/academy_awards/gallery/dataset/5a94302592fb565ed400103b

Oscars Example

Tidbits and Lessons Learned....

- When specifying the problem, be as specific as possible
 - Not: "Let's predict the Oscars"
 - **Instead:** "Let's Predict the Oscars by correlating a series of award wins with the final Oscar win."
- The statement of the problem will guide the data required
- Be aware of the cost of collecting the data versus the ROI:

Effort of a ML Application



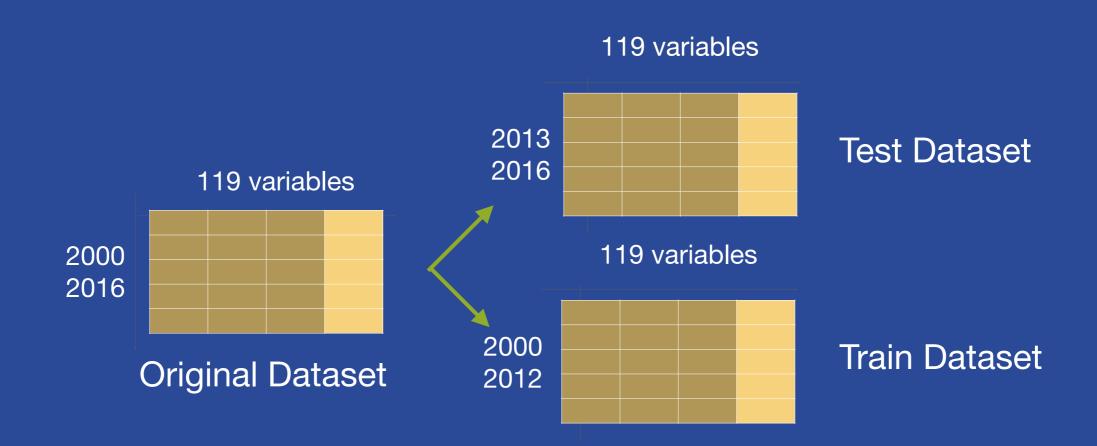
Oscars Example

Tidbits and Lessons Learned....

- When specifying the problem, be as specific as possible
 - Not: "Let's predict the Oscars"
 - Instead: "Let's Predict the Oscars by correlating a series of award wins with the final Oscar win."
- The statement of the problem will guide the data required
- Be aware of the cost of collecting the data versus the ROI:
 - IMDB data is readily available
 - Start small and go straight to the desired result
- We're done right?
 - Nope. You can't escape Feature Engineering
 - Items: BAFTA_won_categories = list of nominations
 - Aggregations: Nomination and Award counts
- You can't escape Feature Selection
 - Full user reviews costly to collect and not useful

Wait: How were you confident in the predictions?

Evaluating the Models



- Ultimately, we want to use all the history to predict the winner for the current year
- In order to evaluate success, we use a model built from 2000-2012 data to predict the winners for 2013-2016
- Built a separate Deepnet for each award category
- Evaluation obtained a ROC AUC over 0.98 across all award categories

Reality Check

Three Important Concepts in Applying ML...

- All Machine Learned models are wrong
- Real-world Machine Learning is iterative
- End-to-end Machine Learning is compositional

Tenets of Machine Learning

- All Machine Learned models are wrong, but some are useful
 - Better features always beat better algorithms
 - Good algorithms already exist and are good enough
 - Tools like OptiML exist which can help optimize performance
 - The data is **never** good enough
- Real-world Machine Learning is iterative
 - Automation is better than hand tuning you need an API!
 - When data changes quickly, training speed is more important than accuracy
 - Repeatability is superior to a single strong result
- End-to-end Machine Learning is compositional
 - Problems are solved with workflows of algorithms
 - A ML solution is not real until it is in production
 - ML is here: Now we need 100,000x people applying ML

Your Turn!

ml

- What are some problems you can solve with ML?
- Do you have the data
 - Where is it? Can you get it?
 - Does it need cleaning (hint: yes)
 - What ML tasks will be involved?
- Remember: go straight to the result
 - Prove it before you build it
 - Use Models and Logistic Regressions to start
 - Spend time on features and introspection

