Time Series Forecasting the Future

Charles Parker VP ML Algorithms, BigML, Inc

What is Time Series?

- Traditional machine learning data is assumed to be Independent & Identically Distributed
 - Independent (points have no information about each other's class)
 - Identically distributed (come from the same distribution)

Independent Data

Color	Mass	PPAP		
red	11	pen		
green	45	apple		
red	53	apple		
yellow	0	pen		
blue	2	pen		
green	422	pineapple		
yellow	555	pineapple		
blue	7	pen		

Discovering patterns:

- Color = "red" \Rightarrow Mass < 100
- PPAP = "pineapple" \Rightarrow Color

≠ "blue"

Color = "blue" ⇒ PPAP =
 "pen"

Independent Data

Color	Mass	PPAP		
green	45	apple		
blue	2	pen		
green	422	pineapple		
blue	7	pen		
yellow	0	pen		
yellow	9	pineapple		
red	555	apple		
red	11	pen		

Patterns still hold when rows re-arranged:

• Color = "red" \Rightarrow Mass < 100

PPAP = "pineapple" ⇒ Color
≠ "blue"
Color = "blue" ⇒ PPAP = "pen"

What is Time Series?

- Traditional machine learning data is assumed to be Independent & Identically Distributed
 - Independent (points have no information about each other's class)
 - Identically distributed (come from the same distribution)
- But what if you want to predict just the next value in a sequence?
 - 1, 2, 3, 2, ???
 - No longer independent, not identically distributed!

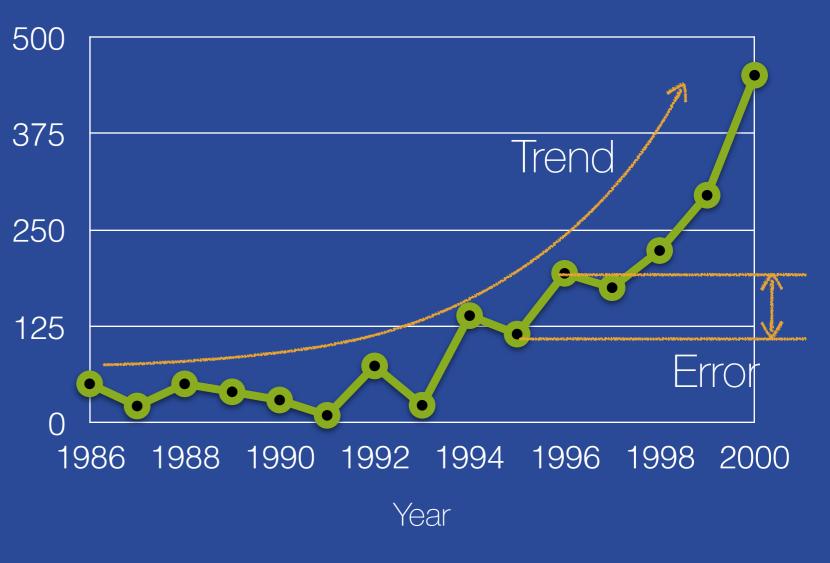
Dependent Data

Tons

6	n	

Year	Pineapple
1986	50.74
1987	22.03
1988	50.69
1989	40.38
1990	29.80
1991	9.90
1992	73.93
1993	22.95
1994	139.09
1995	115.17
1996	193.88
1997	175.31
1998	223.41
1999	295.03
2000	450.53

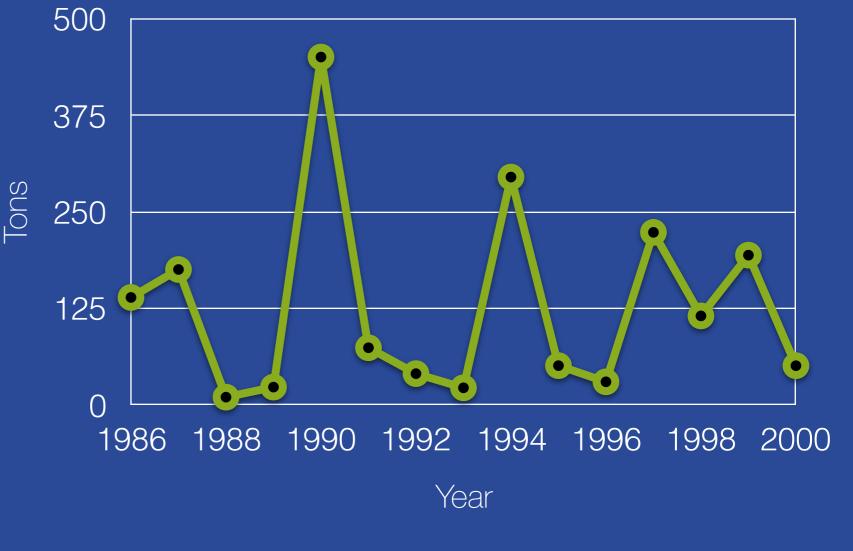
Pineapple Harvest



Dependent Data

Year Pineapple 1986 139.09 1987 175.31 9.91 1988 1989 22.95 1990 450.53 1991 73.93 1992 40.38 22.03 1993 1994 295.03 1995 50.74 1996 29.8 223.41 1997 1998 115.17 1999 193.88 2000 50.69

Pineapple Harvest



Rearranging Disrupts Patterns

What is Time Series?

- Traditional machine learning data is assumed to be Independent & Identically Distributed
 - Independent (points have no information about each other's class)
 - Identically distributed (come from the same distribution)
- But what if you want to predict just the next value in a sequence?
 - 1, 2, 3, 2, ???
 - No longer independent, not identically distributed!
 - This also changes how we evaluate!

Random Train / Test Split

Linear Train / Test Split

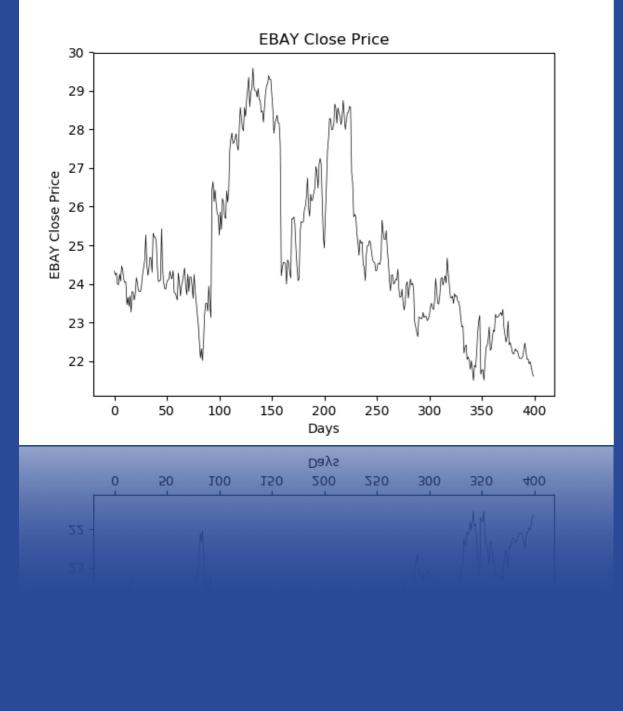
Test

Train

Year	Pineapple
1986	50.74
1987	22.03
1988	50.69
1989	40.38
1990	29.80
1991	9.90
1992	73.93
1993	22.95
1994	139.09
1995	115.17
1996	193.88
1997	<u>5</u> 175.31
1998	175.31 223.41 295.03 COMPARE
1999	^{295.03} COMPARE
2000	450.53

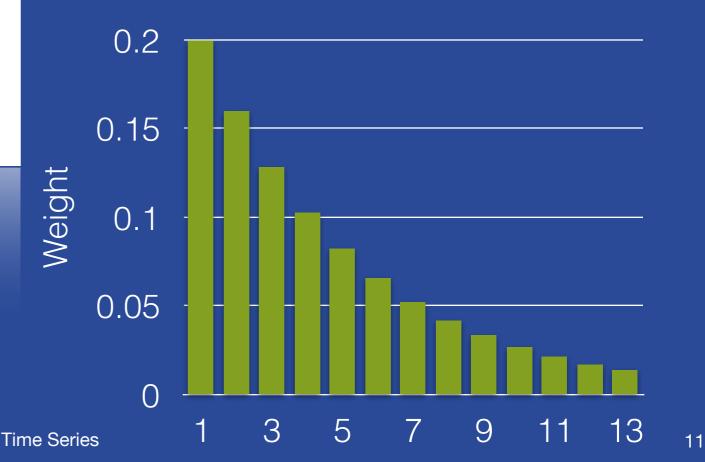
Exponential Smoothing

Idea: Each new value in the series depends on all previous values with a decaying weight



For training values x_t Smoothing Factor $\emptyset < \alpha < 1$ Predicted values s_t

$$s_t = \alpha \cdot x_t + (1-\alpha) \cdot s_{t-1}$$



Smoothing Factor

$s_t = \alpha \cdot x_t + (1-\alpha) \cdot s_{t-1}$

• $\alpha \rightarrow 0$

- Series relies more heavily on past values
- $\alpha \rightarrow 1$
 - Series relies more heavily on current value
- $\alpha = 1$
 - Series is the current value

Problem: Real-world data is more complicated than this...

Trend: A persistent long-term pattern

Additive

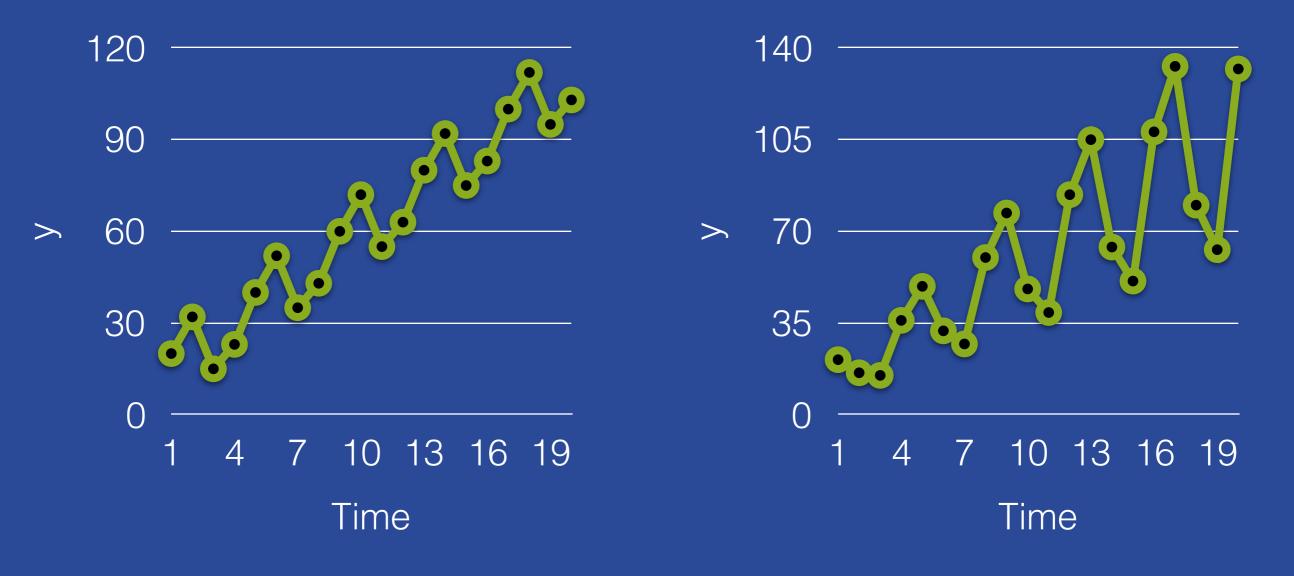
Multiplicative

Seasonality

Seasonality: A recurring shorter-term pattern

Additive

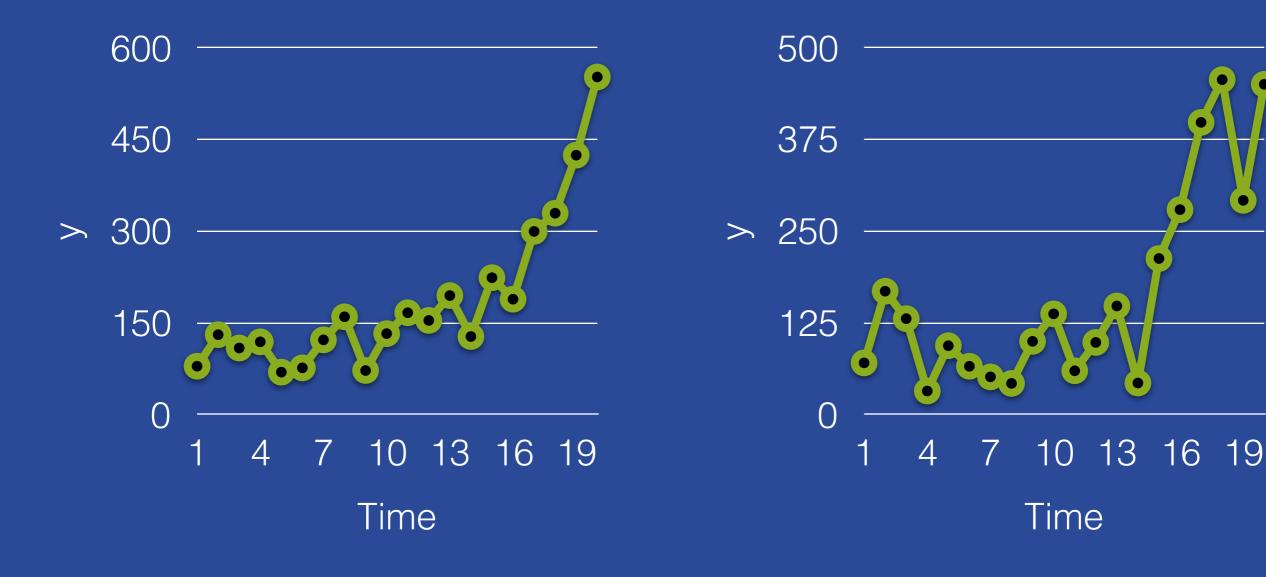
Multiplicative



Error: Cumulative error from the smoothing

Additive

Multiplicative



Time Series Model Matrix

These can all be modeled with time series as well!

M,N,A

Additive Seasonality

No Trend

	No	ne	Add	litive	Multipl	icative
None	A,N,N	M,N,N	A,N,A	M,N,A	A,N,M	M,N,M
Additive	A,A,N	M,A,N	A,A,A	M,A,A	A,A,M	M,A,M
Additive + Damped	A,Ad,N	M,Ad,N	A,Ad,A	M,Ad,A	A,Ad,M	M,Ad,M
Multiplicative	A,M,N	M,M,N	A,M,A	M,M,A	A,M,M	M,M,M
Multiplicative + Damped	A,Md,N	M,Md,N	A,Md,A	M,Md,A	A,Md,M	M,Md,M

Question: Which one works best?

Time Series

Time Series Forecasts

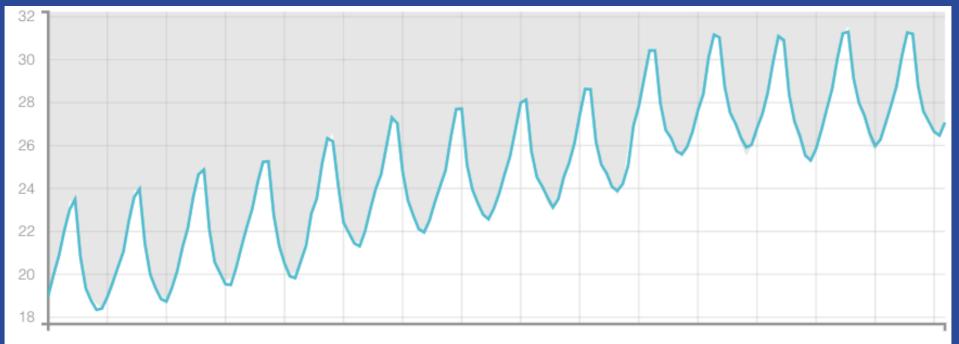
Use the data from the past to predict the future

Time Series Demo #1

- Upload the Milk Production Source
- Create a Dataset and a 1-click Time Series
- Forecast the monthly milk production for 50 months

Calendar Correction

- Time Series data can show variations due to aggregation
- For example: "pounds/month" produced
- Transform: pounds/month ÷ days/month = pounds/day



Calendar Correction

Multi-Variate TimeSeries

- We built a Time Series that predicted two objectives - but this is not multi-variate time series.
- A "convenience" feature. Results are identical to fitting separate individual time series models
- Planned for a future release!

