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What is Time Series?
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• Traditional machine learning data is assumed to be 
Independent & Identically Distributed 

• Independent (points have no information about each 
other’s class) 

• Identically distributed (come from the same 
distribution)
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Independent Data
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Color Mass PPAP
red 11 pen

green 45 apple
red 53 apple

yellow 0 pen
blue 2 pen

green 422 pineapple
yellow 555 pineapple
blue 7 pen

Discovering patterns: 

• Color = “red” ⇒ Mass < 100 
• PPAP = “pineapple” ⇒ Color 
≠ “blue” 

• Color = “blue” ⇒ PPAP = 
“pen”
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Color Mass PPAP
green 45 apple
blue 2 pen

green 422 pineapple
blue 7 pen

yellow 0 pen
yellow 9 pineapple

red 555 apple
red 11 pen

Patterns still hold when rows  
re-arranged: 

• Color = “red” ⇒ Mass < 100 
• PPAP = “pineapple” ⇒ Color 
≠ “blue” 

• Color = “blue” ⇒ PPAP = 
“pen”
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• Traditional machine learning data is assumed to be 
Independent & Identically Distributed 

• Independent (points have no information about each 
other’s class) 

• Identically distributed (come from the same 
distribution) 

• But what if you want to predict just the next value in a 
sequence?  

• 1, 2, 3, 2, ??? 
• No longer independent, not identically distributed!
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Year Pineapple 
Harvest1986 50.74

1987 22.03
1988 50.69
1989 40.38
1990 29.80
1991 9.90
1992 73.93
1993 22.95
1994 139.09
1995 115.17
1996 193.88
1997 175.31
1998 223.41
1999 295.03
2000 450.53
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Year Pineapple 
Harvest1986 139.09

1987 175.31
1988 9.91
1989 22.95
1990 450.53
1991 73.93
1992 40.38
1993 22.03
1994 295.03
1995 50.74
1996 29.8
1997 223.41
1998 115.17
1999 193.88
2000 50.69 Rearranging Disrupts Patterns
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What is Time Series?
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• Traditional machine learning data is assumed to be 
Independent & Identically Distributed 

• Independent (points have no information about each 
other’s class) 

• Identically distributed (come from the same 
distribution) 

• But what if you want to predict just the next value in a 
sequence?  

• 1, 2, 3, 2, ??? 
• No longer independent, not identically distributed! 
• This also changes how we evaluate!
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Random Train / Test Split
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plasma 
glucose bmi diabetes 

pedigree age diabetes

148 33.6 0.627 50 TRUE

183 23.3 0.672 32 TRUE

89 28.1 0.167 21 FALSE

78 31 0.248 26 TRUE

115 35.3 0.134 29 FALSE

197 30.5 0.158 53 TRUE

Train Test
plasma 
glucose bmi diabetes 

pedigree age diabetes

85 26.6 0.351 31 FALSE

137 43.1 2.288 33 TRUE

116 25.6 0.201 30 FALSE
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Linear Train / Test Split
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Train Test

Year Pineapple 
Harvest1986 50.74

1987 22.03
1988 50.69
1989 40.38
1990 29.80
1991 9.90
1992 73.93
1993 22.95
1994 139.09
1995 115.17
1996 193.88

Year Pineapple 
Harvest

1997 175.31
1998 223.41
1999 295.03
2000 450.53Fo
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Exponential Smoothing
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For training values 𝒙𝒕
Smoothing Factor 0 < α < 1 
Predicted values 𝒔𝒕

𝒔𝒕 = α·𝒙𝒕 + ⟮1-α⟯·𝒔𝒕-1
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Each new value in the series depends on all previous 
values with a decaying weightIdea:
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Smoothing Factor
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𝒔𝒕 = α·𝒙𝒕 + ⟮1-α⟯·𝒔𝒕-1

• α ➞ 0 
• Series relies more heavily on past values 

• α ➞ 1
• Series relies more heavily on current value 

• α = 1 
• Series is the current value

Problem: Real-world data is more complicated than this…
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Trend
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Trend: A persistent long-term pattern
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Seasonality
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Seasonality: A recurring shorter-term pattern
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Error
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Error: Cumulative error from the smoothing
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Time Series Model Matrix
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None Additive Multiplicative

None A,N,N M,N,N A,N,A M,N,A A,N,M M,N,M

Additive A,A,N M,A,N A,A,A M,A,A A,A,M M,A,M

Additive + Damped A,Ad,N M,Ad,N A,Ad,A M,Ad,A A,Ad,M M,Ad,M

Multiplicative A,M,N M,M,N A,M,A M,M,A A,M,M M,M,M

Multiplicative + Damped A,Md,N M,Md,N A,Md,A M,Md,A A,Md,M M,Md,M

M,N,A

Multiplicative Error
No Trend

Additive Seasonality

• Question: Which one works best?

These can all be modeled with time series as well!
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Time Series Forecasts
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Use the data from the past to predict the future
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Your Turn!
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• Upload the Milk Production Source 
• Create a Dataset and a 1-click Time Series 
• Forecast the monthly milk production for 50 months



BigML, Inc Time Series

Calendar Correction
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• Time Series data can show variations due to aggregation  
• For example: “pounds/month” produced 
• Transform: pounds/month ÷ days/month = pounds/day
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Calendar Correction
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Multi-Variate TimeSeries
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• We built a Time Series that predicted two 
objectives - but this is not multi-variate time series. 

• A "convenience" feature. Results are identical to 
fitting separate individual time series models 

• Planned for a future release!




