Topic Models Discovering Thematic Meaning in Text

Charles Parker VP ML Algorithms, BigML, Inc

What is Topic Modeling?

- Unsupervised algorithm
- Learns only from **text fields**
- Finds hidden topics that model the text

- Questions: How is this different from the Text Analysis that BigML already offers?
 - What does it output and how do we use it
 - Unsupervised... model?

Text Analysis

- 1. Stem Words -> Tokens
- 2. Remove tokens that occur too often
- 3. Remove tokens that do not occur often enough
- 4. Count occurrences of remaining "interesting" tokens

Some afraid great
Some a great
Some agreat
Some bar great

great: appears 4 times

Text Analysis

Be not afraid of greatness: some are born great, some achieve greatness, and some have greatness thrust upon 'em.

•••	great	afraid	born	achieve	
	4	1	1	1	

The token "great" occurs more than 3 times

The token "afraid" occurs no more than once

Hodor!

TA vs TM

Text Analysis

Creates thousands of hidden token counts

Token counts are independently uninteresting

No semantic importance

No measure of co-occurrence

Topic Model

Creates tens of topics that model the text

Topics are independently interesting

Semantic meaning extracted

Support for bigrams

Generating Documents

- "Machine" that generates a random word with equal probability with each pull.
- Pull random number of times to generate a document.
- All documents can be generated, but most are nonsense.

Topic Model

Intuition: • Written documents have *meaning* - one way to describe meaning is to assign a topic.

• For our random machine, the topic can be thought of as increasing the probability of certain words.

Topic Model

- Each text field in a row is concatenated into a document
- The documents are analyzed to generate "k" related topics
- Each topic is represented by a distribution of term probabilities

Topic Models

ml

Intuition: • Any given document is likely a mixture of the modeled topics...

 This can be represented as a distribution of topic probabilities

	word	probability			
cat shoe zebra	travel	23.55%			
ball tree jump pen asteroid	airplane	2.33%			
cable box step cabinet yellow	mars	0.003%			
plate flashlight	mantle	e	11%	Will 2020 be the year that	
Topic: travel		E		humans will embrace space	
	word	probability	89%	exploration and finally	
cat shoe zebra	space	38.94%		travel to Mars?	
ball tree jump pen asteroid	airplane	E			
cable box step cabinet yellow	mars	13.43%			
plate flashlight	mantle	0.05%			
Topic: space		E			

Clustering?

Topic Model Use Cases

- As a preprocessor for other techniques
 Building better models
 Bootstrapping categories for classification
 Recommendation
- Discovery in large, heterogeneous text datasets

ml

Setting k

- Much like k-means, the best value is data specific
- Too few will agglomerate unrelated topics, too many will partition highly related topics
- I tend to find the latter more annoying than the former
- Tuning the Model
 - Remove common, useless terms
 - Set term limit higher, use bigrams

Your Turn!

- Create a Source and a Dataset from the StumbleUpon tsv
- Configure a Topic Model (not a 1-click) using:
 - Maximum n-grams=2
 - Exclude non-dictionary words
 - Exclude non-language characters
 - Removing HTML tags
 - Exclude numeric digits
- What is the primary topic for the phrase boilerplate
 "No soup for you!"

